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Abstract

This is the Appendix for the paper “Modeling Threats and Promises: Explaining the
Munich Crisis of 1938.”

A1 Terminology and Notation

This Appendix contains the analysis of the special case of the Carrot and Stick Game with
incomplete information called the Munich Model. Refer to the text for discussion of the two
players, Manipulator (Man) and Target (Tar). Only two types of Man—PD and HR—and
only two types of Tar—DI and CS—are considered here. For convenience, we write that
Man’s type is a member of YM = {PD,HR} and Tar ’s type is a member of YT = {DI,CS}.
To indicate a player’s type, we use notation such as Man: PD to say that Man is of type PD.
Similarly, we define Man: HR, Tar: DI, and Tar: CS. Man’s prior (initial) type probabilities
are pPD and pHR = 1− pPD. Similarly, Tar ’s type probabilities are pDI and pCS = 1− pDI .
There is uncertainty, as all prior type probabilities are assumed to lie strictly between 0 and
1.

The five possible outcomes are MW, BW, SQ, C, and TW. A player’s utility for an
outcome is determined by its type. A player’s pecific utility values are chosen from the
following common-knowledge utilities:

Man : m+
BW> mMW > m−BW> mSQ > m+

C> mTW > m−C
Tar : tSQ > t+BW > tTW > t−BW > t+C > tMW > t−C

For example, the outcome MW is always worth mMW to Man, but the outcome BW may
be worth either m+

BW or m−BW , depending on Man’s type. The relation of a player’s type
to its utilities is shown in Table A1. For example, the top line of the table indicates that,
if Man: PD, then Man’s utility for outcome BW is m−BW and its utility for outcome C is
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m+
C . Note that Man’s utilities for outcomes MW, SQ, and TW are always mMW , mSQ, and

mTW , regardless of Man’s type. On the other hand, if Man: HR, then Man’s utilities for
outcomes BW and C become m+

BW and m−C , respectively. The situation is similar for Tar,
whose utilities for BW and C change according to its type.

Player Type Probability Preference
Man PD pPD mMW > m−BW > mSQ > m+

C > mTW

Man HR pHR = 1− pPD m+
BW > mMW > mSQ > mTW > m−C

Tar DI pDI tSQ > tTW > t−BW > tMW > t−C
Tar CS pCS = 1− pDI tSQ > t+BW > tTW > t+C > tMW

Table A1: Munich Model: Types, type probabilities, and preferences.

It is convenient to associate simple random variables MBW ,MC , TBW , and TC with player
types, as follows:

• Pr{Man: PD} = pPD. If Man: PD, then MBW = m−BW and MC = m+
C .

• Pr{Man: HR} = pHR = 1− pPD. If Man: HR, then MBW = m+
BW and MC = m−C .

• Pr{Tar: DI } = pDI . If Tar: DI, then TBW = t−BW and TC = t−C .

• Pr{Tar: CS} = pCS = 1− pDI . If Tar: CS, then TBW = t+BW and TC = t+C .

The players’s types are independent. The parameters of the game are the players’ utilities
and type probabilities. We assume that parameters are never equal, that they never equal
0 or 1, and that any functional relationships among the parameters occur only on sets of
measure zero, which we ignore.

Referring to Figure 1 of the text, Man’s type-dependent strategies relate to Man’s decision
at Node 1. In general, x denotes the probability that Man chooses Demand, and 1− x the
probability that Man chooses Concede. This choice is type-dependent, so the probability
that Man: PD chooses Demand is denoted xPD, and the probability that Man: HR chooses
Demand is denoted xHR.

Should the game reach Node 2, Tar adjusts Man’s type probabilities from their prior
values, to their posterior values, reflecting that Man has been observed to choose Demand
and not Concede. The adjusted (posterior) probabilities are denoted qPD and qHR. (See (2)
below.) Note that qHR = 1− qPD.

At Node 2, Tar chooses either Resist, with probability y, or Comply, with probability
1− y. Again, these choices are type-dependent; the probability that Tar: DI chooses Resist
is denoted yDI , and the probability that Tar: CS chooses Resist is denoted yCS.
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Because the game terminates immediately after Man’s choice at Node 3 or Node 4, those
choices depend only on Man’s type. At Node 3, Man: PD chooses Renege and Man: HR
chooses Honor. At Node 4, Man: PD chooses Press On and Man: HR chooses Back Down.

A2 Perfect Bayesian Equilibria

A Perfect Bayesian Equilibrium (PBE) consists of a 5-tuple of probabilities,

(x; y; q) = (xPD, xHR; yDI , yCS; qPD), (1)

in which the type probability, qPD, is updated using Bayesian principles, and all strategic
variables are chosen to maximize expected utility (calculated according to appropriately
updated probabilities).

At a Perfect Bayesian Equilibrium, if the game reaches Node 2, Tar updates Man’s type
probabilities pPD and pHR = 1− pPD to

qPD =
pPDxPD

pPDxPD + pHRxHR
(2)

and, of course, qHR = 1−qPD. Note that the denominator on the right side of (2), pPDxPD+
pHRxHR, is equal to 0 if and only if xPD = xHR = 0; in this case, the game can never reach
Node 2, so the updating specified in (2) does not apply. In other words, (2) restricts a PBE
if and only if either xPD > 0 or xHR > 0. If so, then qPD is well-defined, and satisfies
0 ≤ qPD ≤ 1.

To study Tar ’s choice at Node 2, we first note that, should the game reach Node 3,
the outcome is always MW if Man: PD and BW if Man: HR. Similarly, should the game
reach Node 4, the outcome is always C if Man: PD and TW if Man: HR. Of course, Tar
does not know Man’s true type, and must base its decision at Node 2 on its updated type
probabilities, qPD and qHR = 1− qPD.

For j ∈ YT , suppose that Tar:j. Then Tar ’s expected utility at Node 2 can be written

EUT |j = yj [qPDTC + (1− qPD)tTW ] + (1− yj) [qPDtMW + (1− qPD)TBW ]

where the values of TC and TBW are determined by Tar ’s type, j, as specified above. Differ-
entiating EUT |j with respect to yj produces

∂EUT |j
∂yj

= qPDTC + (1− qPD)tTW − qPDtMW − (1− qPD)TBW

= qPD(TC − tMW ) + (1− qPD)(tTW − TBW ) ≡ Hj. (3)
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At any PBE, yj = 0 if Hj < 0 and yj = 1 if Hj > 0.

Suppose that j = DI, i.e., that Tar: DI. Then TC−tMW = t−C−tMW < 0 and tTW−TBW =
tTW − t−BW > 0, so that

HDI = qPD(t−C − tMW ) + (1− qPD)(tTW − t−BW ),

and it follows that HDI > 0 if and only if

qPD < nDI =
tTW − t−BW

tMW − t−C + tTW − t−BW
.

Therefore, if qPD < nDI , then yDI = 1 at PBE ; if qPD > nDI , then yDI = 0 at PBE . Note
that 0 < nDI < 1.

Finally, suppose that Tar: CS. Then TC = t+C and TBW = t+BW , so that

HCS = qPD(t+C − tMW ) + (1− qPD)(tTW − t+BW )

and it follows that HCS > 0 if and only if

qPD > nCS =
t+BW − tTW

t+C − tMW + t+BW − tTW
.

Therefore, if qPD > nCS, then yCS = 1 at PBE; if qPD < nCS, then yCS = 0 at PBE. Again,
0 < nCS < 1.

Thus, if qPD is close enough to 0, yDI = 1 and yCS = 0, whereas if qPD is close enough to
1, yDI = 0 and yCS = 1. For middling values of qPD, both yDI and yCS equal 0 at equilibrium
if nDI < nCS, while both yDI and yCS equal 1 at equilibrium if nDI > nCS. Whether nDI
is greater than or less than nCS depends on the specific values of Tar ’s utilities. (As noted
earlier, we neglect the possibility of equality.)

Now consider Man’s choice at Node 1, and recall that Man is of type PD or HR. Man’s
strategic variables, xPD and xHR, are the probabilities that Man chooses Demand rather
than Concede if Man: PD and Man: HR, respectively.

Suppose for the moment that Man: PD and Tar: DI. Then the outcome will be MW if
Tar chooses Comply (probability 1 − yDI) and C if Tar chooses Resist (probability yDI).
Thus, Man’s utility will be mMW if Tar chooses Comply at Node 2, and m+

C if Tar chooses
Resist at Node 2. It follows that, if Man: PD and Tar: DI, then Man’s expected utility if
Man chooses Demand is

(1− yDI)mMW + yDIm
+
C

It follows that, if Man:PD and Tar: DI, Man’s expected utility at Node 1 is

xPD{(1− yDI)mMW + yDIm
+
C}+ (1− xPD)mSQ
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Now, continue to assume that Man: PD but consider both types of Tar. By similar
reasoning, Man’s expected utility at Node 1 is

EUM |PD = xPD{pDI [(1− yDI)mMW + yDIm
+
C ]

+pCS[(1− yCS)mMW + yCSm
+
C ]}+ (1− xPD)mSQ

=xPD

{
mMW

∑
j∈YT

pj(1− yj) +m+
C

∑
j∈YT

pjyj

}
+ (1− xPD)mSQ

Now observe that∑
j∈YT

pj(1− yj) +
∑
j∈YT

pjyj =
∑
j∈YT

pj[(1− yj) + yj] =
∑
j∈YT

pj = 1

Therefore, writing r(p, y) =
∑

j∈YT pjyj = pDIyDI + (1− pDI)yCS, we have that

EUM |PD = xPD{mMW (1− r(p, y)) +m+
Cr(p, y)}+ (1− xPD)mSQ

= mSQ + xPD
[
(m+

C −mSQ)r(p, y) + (mMW −mSQ)(1− r(p, y))
]

Differentiating with respect to xPD yields

∂EUM |PD
∂xPD

= (mMW −mSQ) + (m+
C −mMW )r(p, y) ≡ JPD.

Observe that JPD is an indicator of the value of xPD at a PBE. Now JPD ≥ 0 if and only if

r(p, y) ≤ uPD =
mMW −mSQ

mMW −m+
C

so it follows that, if r(p, y) < uPD, then xPD = 1 at PBE, and, if r(p, y) > uPD, then xPD = 0
at PBE. Note that 0 < uPD < 1.

By similar reasoning,

EUM |HR = mSQ + xHR
[
(mTW −mSQ)r(p, y) + (m+

BW −mSQ)(1− r(p, y))
]

so that JHR, the indicator of the value of xHR at a PBE, is defined by

∂EUM |HR
∂xHR

= (m+
BW −mSQ) + (mTW −m+

BW )r(p, y) ≡ JHR

Now JHR ≥ 0 if and only if

r(p, y) ≤ uHR =
m+
BW −mSQ

m+
BW −mTW

so it follows that, if r(p, y) < uHR, then xHR = 1 at PBE, and, if r(p, y) > uHR, then
xHR = 0 at PBE. Again, 0 < uHR < 1. Also, uHR may be greater than or less than uPD.
(As usual, we ignore the possibility that uHR = uPD.)
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To summarize, r(p, y), which equals the unconditional probability that Tar chooses Re-
sist, determines Man’s strategic choice at equilibrium. If r(p, y) is near 0, both types of Man
choose x = 1. If r(p, y) is near 1, both types of Man choose x = 0. But the two types of
Man have different thresholds. Man: PD can choose xPD = 1 at PBE only if r(p, y) ≤ uPD,
while Man: HR can choose xHR = 1 at PBE only if r(p, y) ≤ uHR. These observations allow
for a middling zone of values of r(p, y) where one of xPD and xHR equals 1, and the other
equals 0, at a PBE.

In summary, a Perfect Bayesian Equilibrium (PBE) consists of a 5-tuple of probabilities,

(x; y; q) = (xPD, xHR; yDI , yCS; qPD),

such that

(A) If xPD > 0 or xHR > 0, then

qPD =
pPDxPD

pPDxPD + (1− pPD)xHR(B)

yDI =

{
1 if qPD < nDI

0 if qPD > nDI
; yCS =

{
0 if qPD < nCS

1 if qPD > nCS

(C) If r = pDIyDI + (1− pDI)yCS, then

xPD =

{
1 if r < uPD

0 if r > uPD
; xHR =

{
1 if r < uHR

0 if r > uHR

A3 Munich Model: Perfect Bayesian Equilibria

The parameter pairs nDI and nCS, and uHR and uPD, shape the PBE of the Carrot and
Stick Game, as can be seen by examining B and C. In the text, it is argued that the
most likely configuration of these parameters in the model under study is nCS < nDI and
uPD < uHR < 1− uPD. (The latter inequality implies that uPD < 1

2
.)

Lemma 1: If (xPD, xHR; yDI , yCS; qPD) is a PBE, then

(a) Whenever xPD > 0, xHR = 1;

(b) Whenever yDI < 1, yCS = 1.

Proof : To prove (a), note that it follows from (C) that, if xPD > 0 at PBE, then r ≤ uPD.
Because uPD < uHR, we have that r < uHR. Now (C) shows that xHR = 1, proving (a).
To prove (b), use (B) to show that, if yDI < 1, it must be the case that qPD ≥ nDI > nCS,
which by (B) shows that yCS = 1. The proof of (d) is similar.
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Note that Lemma 1(a) depends only on the relation of uPD and uHR, and Lemma 1(b)
depends only on the relation of nCS and nDI .

Remarkably, Lemma 1 permits classification of the possible PBE of the game according
to the values of xPD and xHR. The left-hand column of Table A2 indicates all possible PBE
of the Carrot and Stick Game with the configuration of parameters detailed above.

Non-Deterrence Deterrence
E1 (xPD = 1, xHR = 1) ED1 qPD < nDI (yDI = 1, yCS = 0)
E2 (xPD = 0, xHR = 1) ED2 qPD = nCS (yDI = 1, 0 < yCS < 1)
E3 (0 < xPD < 1, xHR = 1) ED3 nCS < qPD < nDI (yDI = 1, yCS = 1)
E4 (xPD = 0, 0 < xHR < 1) ED4 qPD = nDI (0 < yDI < 1, yCS = 1)

ED5 qPD > nDI (yDI = 0, yCS = 1)

Table A2: Munich Model: Non-Deterrence and Deterrence Equilibria

One PBE is missing from the left half of Figure A2, namely the Deterrence PBE, which
could be entered as ED (xPD = 0, xHR = 0). At all Deterrence PBE, Man never Demands,
so Node 2 is off the equilibrium path, and the outcome is always SQ. Note that (A) does
not apply, so the value of qPD is formally unspecified. Nonetheless, qPD must have a value
at a PBE, and its value must determine yDI and yCS according to (B), and those two
values in turn determine r. Moreover, by (C) we must have r = pDIyDI + (1 − pDI)yCS ≥
max{uPD, uHR}.

The right half of Table A2 breaks down all of the Deterrence PBE that are in fact
Sequential (Kreps and Wilson, 1982). At a Sequential Deterrence Equilibrium, care must be
taken to establish the value of qPD, the belief at Node 2, as that node never arises in play.
This value must be the limit of beliefs, calculated by (A), for some sequence of strategies
(xPD, xHR) such that xPD > 0, xHR > 0, and lim(xPD, xHR) = (0, 0). For example, for ε > 0,
let xPD = ε and xHR = ε2, so that limε→0+(xPD, xHR) = (0, 0). By (A),

qPD =
εpPD

εpPD + ε2(1− pPD)
=

1

1 + ε1−pPD

pPD

so that limε→0+ qPD = 1 because 0 < pPD < 1. Thus qPD = 1 is a possibility at a Sequential
Deterrence Equilibrium. So is qPD = 0, as can be seen by reversing the assignment of ε and
ε2. Finally, for any q such that 0 < q < 1, set xPD = ε and xHR = ε1−q

q
pPD

1−pPD
. Then it is easy

to verify that limε→0+ qPD = q. We conclude that any value of qPD ∈ [0, 1] is possible at a
Sequential Deterrence Equilibrium. Using this fact, and (B), we can classify all Sequential
Deterrence equilibrium according to the value of qPD, as shown in the right half of Table A2.

Before identifying the Sequential Deterrence equilibria, we study the non-deterrence PBE,
which appear in the left half of Table A2. Recall that we are assuming that uPD < uHR <
1− uPD and nCS < nDI .
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PBE of class E1: (xPD, xHR) = (1, 1). We search first for pure-strategy PBE in which
both types of Man Demand for certain. By (A), qPD = pPD at any such PBE. Because
of (C) and uPD < uHR, it must be the case that r = pDIyDI + (1 − pDI)yCS ≤ uPD.
We can assume that Tar ’s strategy must be pure when xPD = xHR = 1 because, by (B),
a mixed strategy for Tar requires either pPD = nDI or pPD = nCS; these conditions are
equalities in parameter space, which we ignore. The possibility that (yDI , yCS) = (1, 1)
must also be rejected, because it implies that r = 1 > uPD. The remaining possibilities are
(yDI , yCS) = (1, 0) or (0, 1) or (0, 0). But it follows from Lemma 1(b) that (yDI , yCS) = (0, 0)
cannot occur at a PBE. Therefore, a PBE with (xPD, xHR) = (1, 1) must satisfy either (a)
(yDI , yCS) = (1, 0), or (b) (yDI , yCS) = (0, 1).

In case (a), we must have qPD ≤ nDI and qPD ≤ nCS, where qPD = pPD. Because
nDI > nCS, both conditions hold if and only if pPD ≤ nCS. But now r = pDI , so from (C)
we must have pDI ≤ uPD. In summary, we have found the PBE

E1a: (xPD, xHR; yDI , yCS; qPD) = (1, 1; 1, 0; pPD). E1a exists if and only if 0 ≤
pPD ≤ nCS and 0 ≤ pDI ≤ uPD.

In case (b), where (yDI , yCS) = (0, 1), we must have pPD = qPD ≥ nDI and r = 1−pDI ≤
uPD, or pDI ≥ 1− uPD. This leads us to the PBE

E1b: (xPD, xHR; yDI , yCS; qPD) = (1, 1; 0, 1; pPD). E1b exists if and only if nDI ≤
pPD ≤ 1 and 1− uPD ≤ pDI ≤ 1.

PBE of class E2: (xPD, xHR) = (0, 1). Now we search for PBE at which Man: HR always
Demands and Man: PD never Demands. At such a PBE, qPD = 0, by (A). By (B), yDI = 1
and yCS = 0. Therefore r = pDI . By (C), uPD < S < uHR. There is only one possibility for
this PBE,

E2: (xPD, xHR; yDI , yCS; qPD) = (0, 1; 1, 0; 0). E2 exists if and only if uPD ≤
pDI ≤ uHR.

Note that the existence of E2 does not depend on the value of pPD.

PBE of class E3: 0 < xPD < 1, xHR = 1. Now we search for PBE at which Man: HR
Demands for certain while Man: PD sometimes Demands and sometimes does not. By (A),

qPD =
pPDxPD

pPDxPD + (1− pPD)
.
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By (C), r = pDIyDI + (1− pDI)yCS = uPD, which as usual shows that Tar ’s strategy must
be mixed. By Lemma 1(b), there are two possibilities: either (a) yDI = 1 and 0 < yCS < 1,
or (b) 0 < yDI < 1 and yCS = 1.

Assume (a), so that r = pDI + yCS(1− pDI) = uPD, which is equivalent to

yCS =
uPD − pDI

1− pDI
≡ yaCS.

Note that 0 < yaCS < 1 if and only if 0 ≤ pDI < uPD. By (B), qPD = nCS, which is equivalent
to

xPD =
(1− pPD)nCS
pPD(1− nCS)

≡ xaPD.

Notice that 0 < xaPD < 1 if and only if nCS < pPD < 1. The PBE we have found is

E3a: (xPD, xHR; yDI , yCS; qPD) = (xaPD, 1; 1, yaCS;nCS). E3a exists if and only if
nCS < pPD < 1 and 0 ≤ pDI < uPD.

Now assume possibility (b), 0 < yDI < 1 and yCS = 1. Then by (C), r = yDIpDI + (1−
pDI) = uPD, which is equivalent to

yDI =
uPD − 1 + pDI

pDI
≡ ybDI .

Note that 0 < ybDI < 1 if and only if 1 − uPD < pDI ≤ 1. At this PBE, we must have
qPD = nDI by (B). This equality is equivalent to

xPD =
(1− pPD)nDI
pPD(1− nDI)

≡ xbPD.

Notice that 0 < xbPD < 1 if and only if nDI < pPD < 1. We have found the PBE

E3b: (xPD, xHR; yDI , yCS; qPD) = (xbPD, 1; ybDI , 1;nDI). E3b exists if and only if
nDI < pPD < 1 and 1− uPD < pDI ≤ 1.

PBE of class E4: xPD = 0, 0 < xHR < 1. Next we search for PBE at which Man: HR
sometimes Demands while Man: PD never Demands. By (A), qPD = 0, so yDI = 1 and
yCS = 0, and therefore S = pDI . But, by (C), r = uHR. Thus an equilibrium of class E4
can exist only when pDI = uHR, which is an equality in parameter space, so we ignore it.

We now move to the Sequential Deterrence equilibria, which are described in the right
half of Table A2. It is straightforward to verify that
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ED1: (xPD, xHR; yDI , yCS; qPD) = (0, 0; 1, 0; qPD). ED1 exists if and only if
uPD ≤ pDI ≤ 1. If so, ED1 occurs whenever 0 ≤ qPD < nCS.

ED2: (xPD, xHR; yDI , yCS; qPD) = (0, 0; 1, yCS;nCS). ED2 exists if and only if
0 ≤ pDI < uPD. If so, ED2 occurs whenever yaCS ≤ yCS ≤ 1.

ED3: (xPD, xHR; yDI , yCS; qPD) = (0, 0; 1, 1; qPD). ED3 exists for all values of
pPD and pDI . ED3 occurs whenever qPD satisfies nCS < qPD < nDI .

ED4: (xPD, xHR; yDI , yCS; qPD) = (0, 0; yDI , 1;nDI). ED4 exists if and only if
1− uPD < pDI ≤ 1. If so, ED4 occurs whenever ybDI ≤ yDI ≤ 1.

ED5: (xPD, xHR; yDI , yCS; qPD) = (0, 0; 0, 1; qPD). ED5 exists if and only if
0 < pDI ≤ 1− uPD. If so, ED5 occurs whenever qPD > nDI .

Note that the existence of any Deterrence equilibrium never depends on the value of pPD.

In summary, at every point of the (pPD, pDI) unit square there are three families of
Deterrence Equilibria: ED1 above pDI = uPD and ED2 below it; ED4 above pDI = 1−uPD
and ED5 below it; and ED3 everywhere. The non-deterrence equilibria are more scattered.
E1a and E3a always lie adjacent to the pPD axis, and never overlap, E2 arises in a central
band parallel to the pPD axis, and E1b and E3b occur together in a rectangle containing the
point (pPD, pDI) = (1, 1), except that E1b exists on all boundaries of that rectangle, while
E3b does not. Note that there is a large region where there are no equilibria but deterrence.

Figure 2 in the text shows the equilibria of the Munich Model: (a) All Deterrence
Equilibria—in three parts, because of the overlaps; (b) All Non-Deterrence Equilibria.
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